Correction Devoir Commun 16 novembre 2024.

Exercice 1 : Lancer de javelot (6 points)

Partie 1 : Tracé de vecteurs.

Q1. Système {javelot} bilan des forces : poids \vec{P}

Q2. M₅M₇ mesure 2,7 cm sur le papier et avec l'échelle 1,2 cm \Leftrightarrow 26 m M₂M₄ = $\frac{26 \times 2,7}{1,2}$ = 58,5 m

$$v_6 = \frac{M_5 M_7}{2 \times \tau} = \frac{58,5}{2 \times 1,0} = 29,3 \text{ m.s}^{-1}$$

De même $M_7M_9 = \frac{26 \times 2,7}{1,2} = 58,5 \text{ m}$

$$v_8 = \frac{M_7 M_9}{2 \times \tau} = \frac{58.5}{2 \times 1.0} = 29.3 \text{ m.s}^{-1}$$

Q3. Echelle 1 cm pour 5,0 m.s⁻¹

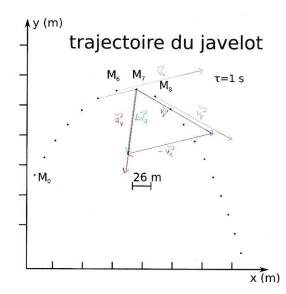
 $\overrightarrow{v_6}$ mesure 5,9 cm et $\overrightarrow{v_8}$ mesure 5,9 cm

Q4.
$$\Delta \overrightarrow{v_7} = \overrightarrow{v_8} - \overrightarrow{v_6}$$

 $\Delta \overrightarrow{v_7}$ mesure 4,4 cm donc $\Delta v_7 = 22 \text{ m.s}^{-1}$

Q5. A₇ =
$$\frac{\Delta v_7}{2 \times \tau}$$
 = $\frac{22}{2 \times 1.0}$ = 11 m.s⁻²

Echelle: 1 cm pour 2,0 m.s⁻²

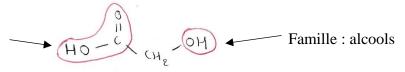

 $\overrightarrow{a_7}$ mesure 5,5 cm

Q6. $\overrightarrow{a_7}$ est quasiment vertical comme le poids \overrightarrow{P} .

Q7. Ligne 2 dt = 100×10^{-3} s

Q8. Pour v_x on prend la distance entre la coordonnée x du point après i c'est-à-dire x(i+1) et celle du point avant i c'est-à-dire x(i-1) puis on divise par la durée entre ces points qui correspond à 2dt.

Q9. ax.append((vx[i+1]-vx[i-1])/(2*dt)) ay.append((vy[i+1]-vy[i-1])/(2*dt))


Exercice 2: L'acide glycolique (7 points)

Partie 1

Q1. $[H_3O^+] = c^{\circ} \times 10^{-pH} = 1 \times 10^{-2.8} = 1,6 \times 10^{-3} \text{ mol.} L^{-1}$

Q2.

Famille : acide carboxylique —

Q3.

Q4. Ay sens de Bronsted, un acide est une espèce chimique susceptible de céder un proton H⁺.

Q5.

Q7.
$$C_2H_4O_3(aq) = C_2H_3O_3^-(aq) + H^+$$

 $H_2O(\ell) + H^+ = H_3O^+(aq)$

 $C_2H_4O_3(aq) \ + \ H_2O(\ell) \rightleftarrows \ C_2H_3O_3^-(aq) + H_3O^+(aq)$

Q8. Dans le spectre IR : On a une bande d'absorption à $\approx 1700 \text{ cm}^{-1}$ caractéristique de la liaison C = O et une large bande d'absorption entre 2500 et 3400 cm⁻¹ caractéristique de la liaison O-H pour les acides carboxyliques et les alcools.

Partie 2

Q9. – Détermination de la concentration de la solution commerciale C_m.

Déterminer la masse d'un litre solution : $m(sol) = \rho \times V = d \times \rho_{eau} \times V = 1,26 \times 1000 \times 1,0 = 1260 g$

Déterminer la masse de soluté (acide glycolique) dans 1,0 L de solution : $P_m(a.g.) = \frac{m(a.g.)}{m(sol)} \times 100$

$$m(a.g.) = \frac{P_m(a.g.) \times m(sol)}{100} = \frac{70 \times 1260}{100} = 882 g$$

Déterminer la quantité de matière de soluté (acide glycolique) dans 1,0 L de solution : $n(a.g.) = \frac{m(a.g.)}{M(acideglycolique)} = \frac{m(a.g.)}{m(acideglycolique)}$

$$\frac{882}{76.0}$$
 = 11,6 mol

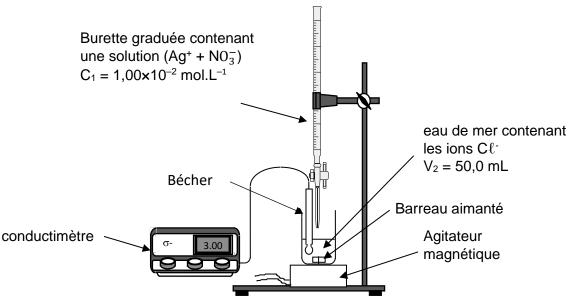
Donc
$$C_{com} = \frac{n(a.g.)}{V} = 11,6 \text{ mol.}L^{-1}$$

- Déterminer le volume de solution commerciale
$$V_{com}$$
 à prélever pour préparer la solution par dilution :
$$C_{com} \times V_{com} = C_F \times V_F \ donc \ V_{com} = \frac{C_F \times V_F}{C_{com}} = \frac{9,28 \times 10^{-2} \times 250,0}{11,6} = 2,0 \ mL$$

Protocole:

- Prélever 2 mL de solution commerciale dans un bécher avec une pipette jaugée de 2 mL et une poire à pipeter.
- Verser le prélèvement dans une fiole jaugée de 250,0 mL
- Ajouter de l'eau distillée jusqu'au 2/3
- Boucher et Agiter
- Compléter avec l'eau distillée jusqu'au trait de jauge
- Homogénéiser.

Exercice 3: Qualité des eaux souterraines sur le littoral (7 points).


A. L'eau salée de la Méditerranée.

Q1. D'après le document introductif, la concentration minimale en masse C_m en ion chlorure est $C_m(Cl^-) = 200$ $mg.L^{-1}$.

Q2. La concentration en quantité de matière en ions chlorure apportés par $MgC\ell_2(s)$ est : $[C\ell^-] = 8.0 \times 10^{-2}$ mol. L^{-1} La concentration en masse d'ions chlorure apportée par $MgC\ell_2$: $c_{ml} = [C\ell^-] \times M(C\ell) = 8.0 \times 10^{-2} \times 35.5 = 2.8 \text{ g.L}^{-1}$ La concentration en masse d'ions chlorure apportée par NaC ℓ : $c_m = 16.5 \text{ g.L}^{-1}$

Donc $c_{\text{mtot}} = c_{\text{m}} + c_{\text{m1}} = 16.5 + 2.8 = 19.3 \text{ g.L}^{-1}$.

B. Titrage des ions chlorure de l'eau douce des eaux souterraines. Q3.

Q4. D'après la loi de Kohlrausch :

Les ions présents sont : Ag^+ ; $C\ell^-$; NO_3^- .

La loi de Kohlrausch s'écrit : $\sigma = \lambda_{Ag^+} \times [Ag^+] + \lambda_{C\ell^-} \times [C\ell^-] + \lambda_{NO_3^-} \times [NO_3^-]$

L'équation support du titrage est : $Ag^{+}(aq) + C\ell^{-}(aq) \rightarrow AgC\ell(s)$

	Evolution des quantités de matière	
Ions	Avant l'équivalence V < V _E	Après l'équivalence V > V _E
Ag^+	= 0	Augmente
Cℓ⁻	Diminue	= 0
NO ₃ -	Augmente	Augmente

Avant l'équivalence : d'après le tableau des conductivités molaires ioniques : $\lambda_{NO_3^-} < \lambda_{C\ell^-}$ donc σ diminue.

Après l'équivalence : Toutes les concentrations augmentent donc σ augmente.

Donc la courbe III.

Q5. $V_E = 13 \text{ mL}$

À l'équivalence,
$$n_i(C\ell^-) = n_{vers\acute{e}}(Ag^+)$$
 or $n_i(C\ell^-) = [C\ell^-] \times V_2$ et $n_{vers\acute{e}}(Ag^+) = C_1 \times V_E$ donc : $[C\ell^-] \times V_2 = C_1 \times V_E$ d'où : $[C\ell^-] = \frac{C_1 \times V_E}{V_2} = \frac{1,00 \times 10^{-2} \times 13,0}{50,00} = 2,6 \times 10^{-3} \text{ mol.L}^{-1}$

Concentration en masse en ions chlorure $C_m = [C\ell^-] \times M(C\ell) = 2.6 \times 10^{-3} \times 35.5 = 9.2 \times 10^{-2} \text{ g.L}^{-1} = 92 \text{ mg.L}^{-1} \text{ ce qui}$ est < à 200 mg.L⁻¹ donc cette eau peut être utilisée pour l'alimentation en eau potable.

C. Modélisation d'un titrage

Q6. Pour Ag⁺ : Ag⁺ est le réactif limitant avant l'équivalence et le réactif en excès après. Donc sa quantité de matière est nulle jusqu'à l'équivalence puis elle augmente \Rightarrow $\mathbf{n}_{\mathbf{B}}$

Pour Cl⁻ : Cl⁻ est consommé avant l'équivalence et est le réactif limitant après l'équivalence. Donc sa quantité de matière diminue jusqu'à l'équivalence et est nulle après \Rightarrow \mathbf{n}_{A}

Pour AgCl : AgCl est formé jusqu'à l'équivalence et n'est plus formé au-delà. Donc sa quantité de matière augmente jusqu'à l'équivalence puis reste constante \Rightarrow $\mathbf{n}_{\mathbf{C}}$.